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SUMMARY

We developed a code for the direct numerical simulation of particle-laden turbulent �ows, using the
Eulerian–Lagrangian point-particle approach. The code uses a semi-implicit coupling scheme between the
particles and the �uid, and a standard �nite-volume single-phase solver, which can run either in DNS or
LES mode; it can consider either one- or two-way coupling between the particles and the �uid. The code
was used to study the dynamics of the particle–turbulence interactions in channel and pipe �ows loaded
with small, heavy particles. We present some results, from both an instantaneous-structure perspective
(�uid turbulence structures and particle-concentration patterns), and a statistical perspective (probability
distribution functions and correlations). Our results suggest that the near-wall particle–�uid interaction
can be understood in terms of the interaction of the particles with the streamwise vortices. The strong
streamwise vortices above the wall are responsible for the elongated streaky patterns that occur both
in the deposition and resuspension of the particles. When two-way coupling is considered, the particles
produce a large damping in the intensity of the streamwise vortices, without any signi�cant change in
their shape and their size. This damping leads to a weakening of the near-wall streaky-pattern, and to
a reduction in the accumulation of particles at the wall. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wall-bounded particle-laden turbulent �ows are important in numerous industrial processes,
such as: coal combustion, catalytic reactors, dust deposition and removal in clean rooms,
droplets deposition in gas–liquid �ows, etc. Of particular interest is the determination of the
dispersion of the particles, and their deposition and resuspension at the walls, which depends
on the particle–turbulence interaction.
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A review of the early work on Eulerian–Lagrangian DNS=LES simulations of particle-laden
turbulent �ows can be found in Reference [1]. Most of the numerical work on the particle–
turbulence interaction has been on homogeneous isotropic turbulence (e.g. References [2–4]).
Besides the numerical work, there exists also some theoretical work on homogeneous isotropic
turbulence. Starting from a postulated spectrum for the turbulence without particles, and using
a force acting on the �uid to take into account the presence of the particles, Ooms and co-
workers [5, 6] developed a model to predict the corresponding spectrum of the turbulence with
particles.
The structure and dynamics of near-wall turbulence is very di�erent from homogeneous

isotropic turbulence, resulting in a di�erent behaviour for both the particles and the turbu-
lence. The interaction between the particles and the turbulence leads to a non-uniform particle
concentration and the formation of particle clusters, which are quite di�erent from the ‘pref-
erential concentration of particles’ found in homogeneous isotropic turbulence [7]. Also, in
wall-bounded �ows the turbulence modi�cation promoted by the particles is very di�erent
from homogeneous isotropic turbulence. For example, Kulick et al. [8] made measurements
on the turbulence modi�cation in a channel-�ow of air laden with small heavy particles,
and found that the degree of turbulence attenuation by the particles is much higher than in
homogeneous isotropic turbulence.
We developed a code for the direct numerical simulation of particle-laden turbulent �ows,

using the Eulerian–Lagrangian approach, DELFT (Direct Eulerian–Lagrangian Flow Turbu-
lence code). The code uses a semi-implicit coupling scheme between the particles and the
�uid, and a standard �nite-volume single-phase solver, which can run either in DNS (direct
numerical simulation) or LES (large-eddy simulation) mode. The particles are assumed to be
‘small’ and are treated as point-particles. The code can consider either one-way coupling (i.e.
neglect the modi�cation of the �ow by the particles) or two-way coupling (i.e. simultaneous
calculation of both the forcing of the particles by the �ow and of the �ow by the particles).
We consider only the particle–turbulence interactions (either one- or two-way coupling),

and neglect inter-particle interactions. When doing two-way coupling simulations, we deal
with ‘intermediate particle-loadings’. The assumption is that the particle concentration is high
enough such that the turbulence modi�cation by the particles is important, but low enough
such that inter-particle interactions can be neglected. Note, however, that the local value of
the particle concentration can be much higher than the average value; in particular, in regions
where it occurs the formation of particle clusters. In these regions, inter-particle interactions
might play an important role, even with quite small average values of the particle concentra-
tion.
DELFT was used to study channel and pipe fully developed turbulent �ows loaded with

small, heavy particles. We present some results from both an instantaneous structure perspec-
tive (�uid turbulence structures and particle-concentration patterns) and a statistical perspective
(probability distribution functions and correlations). Our results suggest that both the particles
deposition=resuspension and the in�uence of the particles on the turbulence can be understood
in terms of the interaction of the particles with the streamwise vortices (the key turbulence-
structure in single-phase wall-bounded �ows [9, 10]).
The rest of the paper is organized as follows. In Sections 2 and 3 we present the formulation

of the problem and the numerical method. In Section 4 we present the results for DNS of pipe
�ow with one-way coupling, focusing on the relation between the turbulence structure and the
particles deposition and resuspension. In Section 5 we present the results for LES of channel
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�ow with two-way coupling, focusing on the turbulence modi�cation by the particles. In
Section 6 we summarize the major conclusions and o�er some perspectives on the continuation
of the work.

2. PROBLEM FORMULATION

The di�erent coupling mechanisms that can occur in particle-laden �ows are shown schemat-
ically in Figure 1. We consider an incompressible turbulent �ow, where the �ow and the
particles are subject to some boundary and initial conditions. The �ow exerts a force on the
particles, which determines their trajectory. The particles exert an opposite force on the �ow,
producing a modi�cation in the �ow known as ‘turbulence modulation’. If the particle mass-
concentration is very small, then the in�uence of the particles on the �ow can be neglected;
this is known as one-way coupling. If the ‘turbulence modulation’ cannot be neglected, then
the �ow has to be solved simultaneously with the particle trajectories; this is known as two-
way coupling. If the concentration of particles is high enough, then inter-particle interactions
have also to be taken into account: inter-particle collisions and hydrodynamic coupling. Hydro-
dynamic coupling occurs when the distance between the particles is not large, when compared
with the size of the particles, and the force acting on a particle depends on the position and
velocity of the other particles. In this paper, we do not consider inter-particle collisions and
hydrodynamic coupling.
In principle, the global initial and boundary conditions together with the boundary conditions

imposed at the surface of each particle could be used to obtain a ‘fully resolved simulation’,
with the detailed �ow around every particle. Due to the large number of particles, this is
impracticable with the computer resources available today. Instead of considering the detailed
�ow around every particle, the e�ect of the particles on the continuous phase is modelled,
leading to modi�ed equations for the continuous phase. These equations are solved using

Figure 1. Coupling mechanisms in particle-laden �ows.
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numerical methods similar to the ones for single-phase �ows (DNS, LES, etc.), together with
the tracking of the individual particles. This is a standard approach when dealing with �ows
loaded with a large number of small particles, and it is usually called Eulerian–Lagrangian
DNS (or LES). However, DNS is a misnomer, since the interaction between the particles
and the �uid is modelled; it refers to the simulation of the continuous phase, which uses the
Navier–Stokes equation together with an extra term to model the particle e�ects.
We are dealing with a very-small volume-fraction of particles, and the e�ect of the particles

on the continuity equation can be neglected. The interaction between the particles and the �uid
is felt through an exchange of momentum. The continuity and Navier–Stokes equations for
the continuous phase become

∇ ·U=0 (1)

�
{
@U
@t
+ (∇U) ·U

}
=−∇P + �∇2U+F (2)

where U is the velocity of the �uid (continuous phase), P is the pressure, � is the density,
and � is the viscosity. The continuity equation is exactly the same as for an incompressible
�ow without particles. The Navier–Stokes equation has the extra term F, which is the force
per unit of volume due to the particles. Equations (1) and (2) are solved together with the
equations for the trajectory of the particles. For each particle we have

M
dV
dt
=F (3)

where V is the velocity and M the mass of the particle. F is the force exerted by the �uid
on the particle.
If the particle mass-concentration is very small, then F can be neglected in Equation (2).

The continuity and Navier–Stokes equations become exactly the same as for the �ow without
particles, and Equations (2) and (3) are uncoupled. In addition to the solution of the single-
phase �ow, the problem simply requires the use of an algorithm for tracking the individual
particles (one-way coupling). If F cannot be neglected in Equation (2), then Equations
(1)–(3) need to be solved simultaneously (two-way coupling).
The solution of the problem depends on the models used for F and F. We assume that

the distance between the particles is large, when compared with the size of the particles, such
that the force on a particle does not depend on the position and velocity of the other particles
(i.e. we neglect hydrodynamic coupling). For small heavy particles in a gas, using order of
magnitude estimates it can be shown that the most important force is the drag force (e.g.
Reference [11]). Considering only the drag force:

F=Cd

(
�D2p
4

)
�
2
|(Up −V)|(Up −V) (4)

where Dp is the particle diameter, and Up is the velocity of the continuous-phase at the centre
of the particle. For the drag coe�cient Cd, similarly to Uijttewaal and Oliemans [12], we use
a simple equation that gives a good approximation of the standard drag curve:

Cd =
24
Rep

+ 0:44 (5)
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where Rep is the particle Reynolds number, de�ned as

Rep≡ |(Up −V)|Dp
�

(6)

where � is the kinematic viscosity of the �uid. For small values of Rep, Cd reduces to 24=Rep,
which is the drag coe�cient in the case of Stokes drag. Here we consider only the drag force.
However, the inclusion of other terms in the force exerted by the �uid on the particle, or the
use of a di�erent equation for the drag coe�cient, is straightforward and it was done in other
studies. For example, DELFT was used to study turbulent �ows laden with small bubbles,
considering the drag, buoyancy and added-mass forces [13].
In the case of two-way coupling, besides a model for F, a model for F is needed. If the

particles are much smaller than the smallest relevant length scale of the �ow, then a simple
point-particle approach is adequate. In this approach F is given by

F(r)=−
k=Np∑
k=1

Fk�(r− Pk) (7)

where r is the position in the continuous phase, Np is the total number of particles, Pk is the
position of a particle, and Fk is the value of F for the particle at Pk . �(r − Pk) is a Dirac
delta-function — i.e. the force of a particle on the �uid is considered applied at the point
where the centre of the particle is located.
We use the point-particle approach, which imposes a severe restriction: the particle has to

be signi�cantly smaller than the grid-cell. The restriction comes from the fact that the velocity
used to calculate the force on the particle, Up, is the velocity of the continuous phase at the
centre of the particle. Since the particle is forcing the �uid, Up itself is being in�uenced by
the presence of the particle, and it is not the ‘undisturbed �uid velocity’, assumed in the
standard point-particle derivation (e.g. Reference [14]). The ‘local velocity disturbance’, due
to the particle presence, can be felt quite faraway from the particle. Since Up is obtained
by interpolating the �uid velocity in the neighbouring grid-points, this can result in a large
underestimation of the particle–�uid force, unless the grid-cell is signi�cantly larger than the
particle.
There exist two opposing requirements: on one hand, the accuracy of the continuous-phase

simulation requires a grid-cell signi�cantly smaller than the �uid scales one wants to resolve,
on the other hand, the point-particle approach requires a grid-cell signi�cantly larger than the
particle. If the particles are much smaller than the smallest relevant �ow scales, then both
requirements can be satis�ed (assuming one has enough computer resources). However, in
the so-called DNS point-particle approach, that would require particles much smaller than the
Kolmogorov length-scale, which in most situations is not the case.
The restriction on the size of the grid-cell with respect to the size of the particles is

associated with the basic assumptions of the point-particle approach, and it is applicable in
both one-way and two-way coupling simulations. However, in two-way coupling simulations
the violation of this restriction can lead to much more severe errors than in one-way coupling
simulations.
When doing one-way coupling simulations, the surrounding �uid is not being disturbed

by the particles, and the only consequence of using a small grid-cell is that the particles
‘see’ a local �ow �eld with smaller scales than the ones that are forcing the actual particles.
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Depending on the type of particle, this can introduce signi�cant errors. However, for heavy
particles in a gas, typically, the relaxation-time of the particles is signi�cantly larger than
the time scales of the small scales of the �uid. The particles are driven mostly by the large
scales, and the error introduced by a small grid-cell is not as important as in two-way coupling
simulations.
When doing two-way coupling simulations, the surrounding �uid, which is used to compute

the force acting on the particle, is itself being disturbed by the particle. Unless the grid-cell
is signi�cantly larger than the particle, this can lead to large errors in the computation of
both the trajectories of the particles and the e�ect of the particles on the turbulence [15]. An
alternative, adopted in the channel-�ow simulations with two-way coupling presented here, is
to use a compromise solution: highly resolved LES calculations, using a grid-size that is able
to resolve the most relevant turbulence structures, but it is still signi�cantly larger than the
particle size. This approach can be useful in numerous situations, like the one presented here,
where the particles are smaller, but not much smaller, than the Kolmogorov length scale.

3. NUMERICAL METHOD

Currently, DELFT can deal with channel and pipe �ows with periodic boundary conditions.
Essentially, the codes for both geometries are similar, with the appropriate modi�cations due
to the use of rectangular and cylindrical coordinates.
The numerical method per se is essentially the same, regardless of whether one uses DNS

or LES; apart from a subgrid-scale (SGS) model in the case of LES. We use a �nite-volume
method on a staggered grid. For a �nite-volume method, the interpretation of the point-particle
approach is very natural. The method can be considered as a balance of momentum on a grid-
cell, where, from the perspective of the continuous phase, the particles represent a source=sink
of momentum. Since all the forces between the particle and the �uid occur at the surface of
the particle, if we assume that a particle is either completely inside or completely outside of
a grid-cell, then the source of momentum due to the particle is either equal to −F or equal
to zero. Essentially, the numerical method consists of three parts: (i) continuous-phase solver,
(ii) coupling between the continuous phase and the particles, and (iii) particle tracking.

3.1. Continuous-phase solver

The solution of the continuous phase uses a standard two-step predictor–corrector solver for
single-phase incompressible �ows (e.g. see Reference [16]). The �ow is driven by a pressure
gradient imposed along the streamwise direction, and we impose periodic boundary conditions
both in the streamwise and spanwise directions. The Navier–Stokes equations are discretized
using a second-order accurate method, and the time step is determined by the usual Courant
stability criterion. In the predictor step, a provisional velocity is calculated without enforcing
the continuity equation. In the corrector step, the continuity equation is enforced by means of
a Poisson equation for the pressure. The Poisson equation is solved applying a fast Fourier
transform in the two periodic directions, and solving tridiagonal matrices for the remaining
direction. A more detailed description of the continuous-phase solver can be found in Refer-
ence [17].
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Figure 2. Computational grid-cell.

When doing a large-eddy simulation, an extra stress-tensor, Ss, is introduced to represent
the in�uence of the subgrid-scale motion on the resolved grid-scale velocities. Equation (2)
becomes

�
{
@U
@t
+ (∇U) ·U

}
=−∇P + �∇2U+∇ · Ss +F (8)

The value of Ss is determined using a subgrid-scale model. Here we use the standard Smagorin-
sky model, together with Van-Driest wall-damping (e.g. see Reference [16]).

3.2. Coupling scheme

We use the semi-implicit coupling scheme developed by Portela et al. [18], which has good
numerical stability characteristics and is easy to parallelize. The basic idea is to �rst use the
predictor part of continuous-phase solver to supply the value of @U=@t without F. Then,
use this value together with the models for F and F (Equations (4) and (7)) to solve
simultaneously Equations (2) and (3), in order to obtain: the updated value of V, and a new
value of @U=@t. The new value of @U=@t is used to update U. Finally, use the corrector part
of the continuous-phase solver to enforce the continuity equation.
Consider a grid cell i, with a volume �Vi and a �uid velocity Ui, containing particles with

masses Mi; k , at positions Pi; k , with velocities Vi; k (Figure 2). At time step n, the predictor part
of the continuous-phase solver provides the value of @U=@t without particles, @Uf=@t|ni , which
is combined with the force exerted by the �uid on each particle, Fi; k , to give an equation for
Un+1i and Vn+1i; k :

Un+1i =Uni +
@Uf
@t

∣∣∣∣
n

i
�t − �t

��Vi

∑
k
Fi; k (9)

Vn+1i; k =Vni; k +
�t
Mi; k

Fi; k (10)

Fi; k =�(Uni ;U
n+1
i ;Vni; k ;V

n+1
i; k ) (11)
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where �t is the time-step interval. The function � is determined by the model for F and by
the type of time advancement: explicit or implicit. In the case of implicit time-advancement
we have a dependence on the values at time step n + 1, whereas in the case of explicit
time-advancement the dependence is only on the values at time step n. In order to obtain an
explicit formula for Un+1i , the function � is linearized. In the case of Stokes drag the function
is already linear.
The provisional value of Un+1i , given by Equation (9), is used to update the velocity of the

continuous phase, and the corrector part of the continuous-phase solver is used to enforce the
continuity equation, leading to a �nal value for Un+1i .
For heavy particle-loading, the use of an implicit or semi-implicit coupling scheme is

important, in order to avoid the severe restrictions on the value of the time step that occur
in the case of an explicit coupling. These restrictions are imposed by numerical stability
considerations. If numerical stability considerations do not impose a severe restriction, then
an explicit coupling can be used. We tested several coupling and time-advancement schemes.
For the simulations presented in this paper, with a moderate particle-loading, we found that an
explicit time-advancement scheme could be used, without imposing more severe restrictions
on the time step than the ones imposed by the Courant stability criterion of the continuous-
phase solver. We used a second-order Adams–Bashforth time-advancement scheme, instead
of the Euler time-advancement scheme explained above. The details are more involved, but
the basic idea is the same.

3.3. Particle tracking

The particle tracking part updates the position of the particles, using the updated values of
the velocities supplied by the coupling scheme. Essentially, this part is independent of the
other two, and any standard tracking method can be used, with either an explicit or an im-
plicit time-advancement scheme. The choice between implicit and explicit time-advancement
will depend on the restrictions imposed on the time step by numerical stability
considerations.
Typically, in Cartesian co-ordinates, explicit time-advancement requires a time interval

smaller than the particle relaxation time. Here, we are dealing with heavy particles, with
a relaxation time a few times larger than the time interval used by the continuous-phase
solver (determined by the usual Courant stability criterion). Therefore, the use of explicit
time-advancement does not pose numerical stability problems.
For the channel-�ow geometry, we use a second-order Adams–Bashforth scheme. For the

pipe-�ow geometry, the continuous-phase solver uses cylindrical co-ordinates. However, the
use of cylindrical co-ordinates for the particle tracking poses serious numerical stability prob-
lems near the centre of the pipe [19]. To solve this problem, in the pipe-�ow geometry the
particle tracking is done in Cartesian co-ordinates, together with a mapping between the Carte-
sian and the cylindrical co-ordinates. A more detailed description of the tracking algorithm
for the pipe-�ow geometry can be found in Reference [19].
When doing one-way coupling simulations, the coupling algorithm described above is not

necessary. The equation of motion of the particles can be solved using the continuous-
phase solver and an interpolation method to obtain the velocity of the continuous phase
at the centre of the particle. Here, we use a standard tri-linear interpolation
method.
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4. DNS OF PIPE-FLOW WITH ONE-WAY COUPLING

We present the results of direct numerical simulations assuming elastic bouncing of the par-
ticles at the walls. The focus is on the relation between the turbulence structure and the
particles deposition and resuspension. We consider only the drag force and use Equation (5)
for the drag coe�cient. Gravity was excluded, in order not to mix the gravitational e�ects
with the particle–turbulence interaction. The inclusion of gravity is trivial (it simply requires
the inclusion of the gravitational force in the equation of motion of the particle) and it was
done in other studies using DELFT (e.g. Reference [19]).
The situation under consideration is sketched in Figure 3. The boundary conditions are

periodic in the streamwise direction, and the streamwise length of the computational domain
is Lz=5D. We use cylindrical coordinates with 64 points in the radial direction, and 128 in the
circumferential (spanwise) and streamwise directions. For the streamwise and circumferential
directions we use a uniform grid spacing. For the radial direction we use a non-uniform grid
spacing with an hyperbolic-tangent stretching: the smallest spacing at the wall (�r+|wall≈ 1:3),
and the largest spacing at the centre (�r+|centre≈ 4).
The Reynolds number based on the wall-shear velocity u�≡

√
�w=� (�w is the shear stress

at the wall) and pipe diameter is equal to Re�=360, corresponding to a bulk Reynolds
number Reb≈ 5300, based on the mean �uid velocity in the pipe. The average values of the
Kolmogorov length and time scales, Lk and Tk , can be estimated using the average dissipation
rate of the turbulence kinetic energy:

L+k ≈ 1:6; T+k ≈ 2:5 (12)

Figure 3. Particle-laden pipe �ow.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1045–1065



1054 L. M. PORTELA AND R. V. A. OLIEMANS

Figure 4. Instantaneous streamline pattern of the projection of the velocity
�eld onto a plane perpendicular to the pipe axis.

Throughout this paper, the superscript + is used to represent a variable non-dimensionalised
with wall variables; i.e. using u� and �.
In Figure 4 we show a typical instantaneous streamline pattern of the projection of the

velocity �eld onto a plane perpendicular to the streamwise direction. The pattern is very
similar to the patterns occurring in a channel �ow and in a �at plate turbulent boundary layer
[20]. There exists an ‘array of streamwise vortices’ lying close to the wall. These streamwise
vortices push high speed �uid towards the wall (‘sweeps’) and low speed �uid away from the
wall (‘ejections’). The streamwise vortices are the key structure to understand the near-wall
turbulence dynamics, and are closely related with the well-known single-phase-�ow streaky
pattern near the wall, of alternating regions of low and high speed �uid [9, 10].
In order to get a better understanding of the interaction of the particles with the turbulence

structure, and how it in�uences the particles deposition and resuspension, we performed two
simulations:

1. uniform-start: random-uniform particle distribution over the entire pipe, with the initial
particle velocity equal to the local �uid velocity.

2. wall-start: random-uniform distribution of the centre of the particles within a layer around
the wall, with a thickness of one particle diameter, with the initial particle velocity equal
to zero.

The uniform-start was used to study how the turbulence structure in�uences the particles
dispersion and deposition. The wall-start was used to study how the turbulence structure
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in�uences the particles resuspension. In both cases, the simulations are started without parti-
cles, which are introduced after a statistically steady state is reached. After their introduction,
the number of particles remains constant during the entire simulation. When one particle
leaves the domain, it is reintroduced with the same velocity at the opposite side. We used a
total number of particles Np = 1:5× 105, with the following characteristics:

�p=�=1000; D+p =0:66; T+p =25 (13)

where �p is the particle density, and Tp is the particle relaxation-time, de�ned as

Tp≡ �p�
D2p
18�

(14)

Since we use a non-uniform grid-spacing, the ratio between the grid-cell and particle sizes
depends on the distance to the wall. Even though the particles are everywhere smaller than
the grid-cells, the diameter of the particles is not everywhere ‘much smaller’ than the grid-
spacing (e.g. close to the wall we have Dp=�r≈ 0:5). In principle, this can introduce an error
in the computation of the trajectories of the particles. However, since we are dealing with
a one-way coupling situation, and the particle relaxation-time is signi�cantly larger than the
smallest time-scales of the �ow (Tp=Tk ≈ 10), we do not expect a large error associated with
the small grid-spacing.
Note that the total number of particles is not a relevant physical parameter. We are deal-

ing with a one-way coupling situation, which corresponds to the limit of a zero number of
particles. A large number of particles was used simply for convenience in the visualization
and statistics computation.
For the uniform-start, the time evolution of the distribution of the particles, in a slice of the

pipe with a thickness equal to 1=20 of the pipe diameter, is shown in Figure 5, from shortly
after the introduction of the particles (t+ =14) until t+ =574. For visualization purposes, the
size of the particles is larger than the actual size.
The in�uence of the streamwise vortices on the particle dispersion and deposition is clear.

In the core of the pipe the particles tend to cluster into the edge of circle-like patterns, with
the central region nearly void of particles. The results suggest that: (i) the particle dispersion
is not a simple gradient-di�usion phenomenon, and (ii) the particles tend to cluster at the
edge of the streamwise vortices.
The clustering of the particles at the edge of the streamwise vortices has been observed by

several authors (a review can be found in Reference [7]). It occurs for particles with an ‘inter-
mediate Stokes number’ (the Stokes number is the ratio between the particle relaxation-time
and a characteristic time scale of the �ow). Very light particles behave as tracers, therefore
they have a uniform concentration. Very heavy particles cannot respond to the vortices, during
the time in which they are present. Eaton and Fessler [7] showed that an appropriate Stokes
number to quantify the clustering of the particles at the edge of the vortices is

Stv≡ TpVtRv (15)

where Rv is the radius of the vortex, and Vt is the tangential velocity at the edge of the vortex.
In wall-bounded �ows, the size of the streamwise vortices depends on the distance to the wall
[20]. The smaller vortices occur more frequently close to the wall, and the larger vortices
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Figure 5. Time evolution of the distribution of the particles in a slice of the pipe with
a thickness equal to 1=20 of the pipe diameter (uniform-start).

are found farther from the wall. In our case, the radius of the vortices is roughly between
R+v ≈ 10 and R+v ≈ 50, with the smallest vortices occurring much more frequently close to the
wall, and the largest vortices occurring almost exclusively in the central region of the pipe.
Since the tangential velocity at the edge of the vortices is roughly V+t ≈ 1, the value of Stv
is roughly between 0.5 and 2.5. This corresponds to the range of values where the clustering
of the particles is expected to be more pronounced. According to Eaton and Fessler [7], the
clustering of the particles at the edge of the vortices is most frequently observed when the
value of Stv is between 0.1 and 1.
As time increases, the particles tend to accumulate near the wall, however, the near-wall

particle concentration is not uniform. Very close to the wall the particles cluster into regions of
high particle concentration, alternating with regions of low particle concentration. This pattern
of alternating high–low concentration can be explained by the ‘array of streamwise vortices’
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lying close to the wall, pushing �uid towards the wall, hence pushing the particles towards
the wall. This suggests that the mechanism responsible for the formation of the streaky pattern
of high–low speed �uid close to the wall (the ‘ejections’ and ‘sweeps’ associated with the
streamwise vortices) is also the main mechanism responsible for the particles deposition at
the wall.
To visualize the particles resuspension in the wall-start case, it is convenient to unroll the

pipe wall into a plane. Since the particles are located in a thin layer close to the wall, curvature
e�ects are not important. The front and top views of the time evolution of the distribution
of the particles in the wall-start case is shown in Figure 6, for the same time interval of the
uniform start (from t+ =14 until 574). In the front view, the position of the particles is shown
as a function of the angle along the wall (theta, in radians) and the distance to the wall (y+,
in wall units). In the top view, the position of the particles is shown as a function of the
angle along the wall and the streamwise distance (zeta, normalized by the pipe diameter).
For visualization purposes, in the top view the size and darkness of the particles was scaled
according to the distance to the wall (being larger and darker farther from the wall).
The in�uence of the streamwise vortices on the particles resuspension is clear. The particles

are resuspended according to a streaky pattern, somehow similar to the well-known single-
phase-�ow streaky pattern [9, 10]. The resuspension of the particles takes a relatively long
time to occur, and it only starts to become apparent at t+≈ 100. At t+ =574 the streaky
pattern formed by the resuspension of the particles is very clear. The spacing between the
particle streaks is roughly 100 wall-units, which is also the well-known value of the single-
phase-�ow streak spacing. The relatively well-de�ned particle streaks, with roughly the same
spacing of the single-phase-�ow streak spacing, together with the relatively long time it takes
for the particle streaks to be formed, suggests that the particle streaks are formed by strong
streamwise vortices, as they travel along the wall in the streamwise direction. Essentially, this
is the same mechanisms that has been proposed by several authors to explain the formation
of the single-phase-�ow streaky pattern [9, 10].

5. LES OF CHANNEL-FLOW WITH TWO-WAY COUPLING

We present the results of large-eddy simulations, assuming elastic bouncing of the particles
at the walls and Stokes drag (Cd = 24=Rep). Similarly to the pipe-�ow simulations, we do not
consider the gravitational force on the particles. The situation under consideration is sketched
in Figure 7. The streamwise and spanwise lengths of the computational domain are: Lx=5H
and Ly=2H . Both in the streamwise and spanwise directions we used periodic boundary
conditions and an uniform grid, with 64 grid points in each direction. In the direction normal
to the walls we used 48 grid points, and a non-uniform grid-spacing with a power-function
stretching: the smallest spacing at the wall (�z+|wall≈ 4), and the largest spacing at the centre
(�z+|centre≈ 13).
The Reynolds number based on the wall-shear velocity and channel height is Re�=500,

corresponding to a bulk Reynolds number Reb≈ 8000, based on the mean �uid-velocity in
the channel. The average values of the Kolmogorov length and time scales are:

L+k ≈ 2:0; T+k ≈ 4:0 (16)
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Figure 6. Time evolution of the distribution of the particles close to the pipe wall
(wall-start); left: front view; right: top view.
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Figure 7. Particle-laden channel �ow.

The simulations are started without particles. After a statistically steady state is reached,
the particles are introduced in the �ow with an initial velocity equal to zero. Similarly to
the pipe-�ow simulations, after their introduction, the number of particles remains constant
during the entire simulation. The particles are introduced at 128 equally spaced positions in
the streamwise direction, 64 in the spanwise direction and 48 in the normalwise direction,
leading to a total number of particles Np = 393216, with the following characteristics:

�p=�=8000; D+p =0:5; T+p =111 (17)

Since we use a non-uniform grid-spacing, the ratio between the grid-cell and particle sizes
depends on the distance to the wall. The smallest grid-cell occurs close to the wall, where we
have: �x=Dp≈ 78, �y=Dp≈ 31, and �z=Dp≈ 8. Therefore, in the entire channel, the grid-cells
are signi�cantly larger than the particles, and the error associated with the ratio between the
grid-cell and particle sizes is small [15].
Contrary to the one-way coupling simulations, the number of particles is an important

physical parameter of the problem, associated with the turbulence modi�cation promoted by
the particles. The number of particles corresponds to the following volume and mass fractions:

�v≈ 2× 10−5; �m ≈ 0:16 (18)

A few particle-relaxation-times after the introduction of the particles, a ‘quasi-steady state’ is
reached. In the sense that the rate of particle accumulation at the walls remains approximately
constant, and the changes in the �uid mean-velocity and turbulence are very small. Since
the particles keep accumulating at the wall, the particle-concentration pro�le keeps changing,
however, this change is very slow. Any changes in the �uid turbulence, which could occur as
a result of the changes in the particle-concentration pro�le, are either very small, or very slow
when compared to the turbulence time scales. The results shown here are at a time t∗ ≈ 1
(t∗ ≡ tu�=H) after the introduction of the particles, when this ‘quasi-steady state’ is already
established (t∗ ≈ 1 corresponds to t+≈ 500, and it is approximately equal to �ve particle-
relaxation times).
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Figure 8. Streamlines of the projection of the instantaneous velocity �eld onto a plane
perpendicular to the channel streamwise direction, and contours of the instantaneous absolute

value of the normalwise velocity; top: unladen; bottom: particle-laden.

In Figure 8 we show two typical planes perpendicular to the streamwise direction (unladen
and particle-laden), with the streamlines of the projection of the instantaneous velocity �eld
onto the plane, and the contours of the instantaneous absolute value of the normalwise ve-
locity. Comparing the unladen and particle-laden �ow, it is clear that the particles produce
a large decrease in the value of the normalwise velocity, damping the ‘sweeps’ and ‘ejec-
tions’ associated with the streamwise vortices. However, the shape and size of the streamwise
vortices is not signi�cantly changed by the particles.
In Figure 9 we show two typical streaky patterns (unladen and particle-laden) very close

to the wall (z+=2), in terms of: the contours of the value of the streamwise velocity, and
the streamlines starting at 64 points uniformly distributed along x=0. Clearly, without the
particles the streaky pattern is better de�ned, more intense, and more wiggly, than for the
particle-laden case. The e�ect of the particles on the streaky pattern can be understood in terms
of the damping they produce on the intensity of the streamwise vortices, since the ‘sweeps’
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Figure 9. Instantaneous streaky patterns very close to the channel wall (z+=2), in terms of the contours
of the value of the streamwise velocity, and of the streamlines starting at 64 points uniformly distributed

along x=0; left: unladen; right: particle-laden.

and ‘ejections’ associated with the streamwise vortices are responsible for the streaky-pattern
[9, 10].
In Figures 10 and 11,we show the probability distribution functions (PDF) of the normal

and streamwise velocity �uctuations very close to the wall. For the normalwise velocity, the
unladen PDF is roughly symmetric with respect to zero (negative values indicate a velocity
towards the wall), and the particles produce a large decrease in both the negative and positive
tails of the PDF, which remains roughly symmetric with respect to zero. For the streamwise
velocity, the PDF is not symmetric with respect to zero: it has a shift towards negative values
(negative mode), and a much larger tail for the positive values than for the negative values.
This is a well-known characteristic of the streaky-pattern of alternating regions of low and
high speed: the low speed streaks are larger and weaker, and the high speed regions are
smaller and more intense. The particles make the PDF more symmetric with respect to zero:
they shift the mode towards zero and produce a large decrease in the positive-values tail.
In Figures 12 and 13, we show the spanwise correlation of the normalwise velocity �uctu-

ation and the streamwise correlation of the streamwise velocity �uctuation, of the �uid very
close to the wall. The particles do not produce any signi�cant change in the spanwise correla-
tion of the normalwise velocity �uctuation, indicating that they do not produce any signi�cant
change in the size of the streamwise vortices. However, the particles produce a signi�cant
increase in the streamwise correlation of the streamwise velocity �uctuation, indicating a less
wiggly streaky pattern.
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Figure 10. Probability distribution function of the normalwise velocity �uctuation of the �uid very
close to the channel wall, at z+=4 (negative values indicate a velocity towards the wall); —: unladen

(one-way coupling); - - -: particle-laden (two-way coupling).
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Figure 11. Probability distribution function of the streamwise velocity �uctuation of the �uid very close
to the channel wall, at z+=2; —: unladen (one-way coupling); - - -: particle-laden (two-way coupling).

From both an instantaneous-structure perspective (Figures 8 and 9) and a statistical per-
spective (Figures 10–13), it is clear that the main e�ect of the particles is to produce a large
damping in the intensity of the streamwise vortices, without any signi�cant change in their
shape and size. This damping leads to a damping of the high-speed �uid pushed towards the
wall, which in turn leads to a weakening of the streaky pattern.
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Figure 12. Spanwise correlation of the normalwise velocity �uctuation of the �uid very close to the
channel wall, at z+=4; —: unladen (one-way coupling); - - -: particle-laden (two-way coupling).
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channel wall, at z+=2; —: unladen (one-way coupling); - - -: particle-laden (two-way coupling).

6. CONCLUSION

Our results suggest that the behaviour of wall-bounded particle-laden turbulent �ows can be
understood in terms of the interaction of the particles with the turbulence structure. Similarly
to single-phase �ows, streamwise vortices seem to be the key structure in particle-laden wall-
bounded turbulent �ows:

• Far from the wall the particles tend to cluster at the edge of the streamwise vortices,
leading to the formation of circle-like patterns, with the central region nearly void of
particles.
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• The streamwise vortices push the particles towards the wall, leading to a high particle-
concentration near the wall, with alternating regions of high-low particle-concentration.

• The streamwise vortices that travel above the wall in the streamwise direction seem to
be responsible for most of the particle resuspension, which occurs not randomly, but
according to a streaky pattern, somehow similar to the well-known streaky pattern of
single-phase �ows.

When two-way coupling e�ects are considered, the particles produce a large damping in the
intensity of the streamwise vortices, without any signi�cant change in their shape and size.
This damping leads to the damping of the high-speed �uid pushed towards the wall, which in
turn leads to the weakening of the streaky pattern. The weakening of the turbulence structure
by the particles explains the smaller particle accumulation near the wall, observed by Portela
et al. [21] in channel-�ow simulations with two-way coupling.
The results presented here illustrate the usefulness of Eulerian–Lagrangian point-particle

DNS=LES simulations to get a better understanding of the particle–turbulence interactions.
We did not include inter-particle collisions, however, the inclusion of collisions is relatively
simple, and it has been done in other studies [22]. A more severe limitation is related to
the particle size: the particles have to be signi�cantly smaller than the grid-cell. In two-way
coupling simulations this restriction is particularly important, and highly-resolved LES may
be more appropriate than DNS.
The results presented here illustrate that highly resolved LES calculations can be used

to study the modi�cation of the most relevant turbulence structures by the particles. We
performed LES computations without any particle–�uid coupling at a subgrid-scale level. In
our case we do not expect this to pose any signi�cant problem, due to the following reasons:
(i) we use a high-resolution LES, with a small amount of subgrid-scale turbulence kinetic
energy, and (ii) we are dealing with moderate mass-fractions of small heavy particles (with
a size smaller than the Kolmogorov length scale, and a relaxation-time much larger than the
Kolmogorov time scale). However, for a lower resolution LES and=or di�erent particles, a
better subgrid-scale model might require the inclusion of one- and two-way coupling e�ects
at a subgrid-scale level [23].
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